بحث رياضيات عن المصفوفات أنواعها واستخداماتها – مصفوفة التماثل

بحث رياضيات عن المصفوفات أنواعها واستخداماتها – مصفوفة التماثل

بحث رياضيات عن المصفوفات أنواعها واستخداماتها - مصفوفة التماثل

مصفوفة متماثل، أو متماثل المصفوفة المربعة س التي تساوي نقلها؛ أي سτ= س، هي مصفوفة متماثلة، وإذا كان س يساوي بدلاً من ذلك رقم سلبي ينقله؛ أي A = س¯τ، ثم س عبارة عن مصفوفة متماثلة الانحراف.
في المصفوفات المعقدة يتم استبدال التماثل في كثير من الأحيان بمفهوم المصفوفات الهرمية، والذي يُفيد بأن ∗س = س؛ حيث تشير النجمة إلى التحويل المتزامن للمصفوفة، أي تبديل المرافقة المعقدة ل س.
من خلال النظرية الطيفية؛ تتمتع المصفوفات المتماثلة الحقيقية، والمصفوفات الهرمية المعقدة بمتلازمة القاعدة الخاصة، بمعنى أن كل ناقل يكون قابلًا للتعبير على أنه مزيج خطي من المتجهات الذاتية، وفي كلتا الحالتين تكون جميع القيم الذاتية حقيقية، ويمكن تعميم هذه النظرية على مواقف لا نهائية ذات صلة بالمصفوفات التي تحتوي على عدد غير محدود من الصفوف، والأعمدة.
تكون المصفوفة المتماثلة موجبة محددة، وإذا كانت جميع القيم الذاتية موجبة؛ فهذا يعني أن المصفوفة تكون موجبة، وشبه منتهية، وتكون قابلة للانعكاس.

m2pack.biz