بحث رياضيات عن المصفوفات أنواعها واستخداماتها – استخدامات المصفوفات
تم العثور على تطبيقات المصفوفات في معظم المجالات العلمية، مثل:
في كل فرع من فروع الفيزياء، بما في ذلك الميكانيكا الكلاسيكية، والبصريات، والكهرومغناطيسية، والميكانيكا الكم والديناميكا الكهربائية الكمية، كما يتم استخدامها لدراسة الظواهر الفيزيائية، مثل حركة الأجسام الصلبة.
تُستخدم في رسومات الكمبيوتر، ويتم استخدامها لمعالجة النماذج ثلاثية الأبعاد، وعرضها على شاشة ثنائية الأبعاد.
في نظرية الاحتمالات، والإحصاءات، كما يتم استخدام مصفوفات عشوائية في وصف مجموعات من الاحتمالات، على سبيل المثال يتم استخدامها داخل خوارزمية تصنيف الصفحات التي تصنف الصفحات في بحث Google.
حساب التفاضل، والتكامل المصفوف يعمم المفاهيم التحليلية الكلاسيكية، مثل المشتقات، والأسس إلى أبعاد أعلى.
تُستخدم المصفوفات في الاقتصاد لوصف أنظمة العلاقات الاقتصادية.
يكرس فرع رئيس من التحليل العددي لتطوير خوارزميات فعالة لحسابات المصفوفة، وهو موضوع عمره قرون، ويعد اليوم مجالا موسعا للبحث.
تعمل طرق تحلل المصفوفة على تبسيط الحسابات من الناحية النظرية والعملية.
الخوارزميات المصممة وفقًا لهياكل مصفوفة معينة، مثل المصفوفات المتناثرة، والمصفوفات القريبة من القطر.
تسريع العمليات الحسابية في طريقة العناصر المحددة، وغيرها من العمليات الحسابية.
تحدث المصفوفات اللانهائية في نظرية الكواكب، والنظرية الذرية، وكمثال بسيط للمصفوفة اللانهائية هو المصفوفة التي تمثل عامل مشتق، والذي يعمل على سلسلة تايلور للدالة.
للمزيد من المعلومات يمكنكم تصفح بحث عن المصفوفات.